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CALCULATION OF THE INTENSITY OF ELECTROMAGNETIC
FIELDS OF THERMAL MICROWAVE DETECTORS AT
HIGH TEMPERATURES, 1II

A, M, Andrusenko, V. F, Kravchenko, UDC 621,372.8:536.21
and V. A, Solodukho

The second moments are found for the spectral amplitudes of the thermal electromagnetic
field of a dielectric inhomogeneity of complicated geometry heated to a temperature T,

The second moments of the spectral amplitudes of the thermal field of a dielectric structure with an
arbitrary geometry consisting of steps and rods can be determined on the basis of the method of the generalized
scattering matrix and {1, 2]. Specifying the temperature dependence €j(T) of the dielectric constant of step j,
we extend this method to the solution of analogous problems incorporating a temperature gradient in the in-
homogeneities. Choosing as a basic inhomogeneity a dielectric inclusion of finite length, we can reduce the
number of calculation procedures to a level about 2" times lower than that for a semiinfinite step (here n is the
number of elements in the structure selected).

1. Dielectric Inhomogeneity of Finite Length

in a Waveguide

We seek a solution of the problem of the diffraction of an Hy, wave by a dielectric inclusion of bounded
length in a rectangular waveguide (Fig. 1a) by the method of [1]. We make use of the symmetry of the inhomo-
geneity with respect to the plane z = d/2. We divide the incident field into parts of even and odd parity. This
problem is reduced to two equivalent problems. The structure of the first problem is shown in Fig. 1b, where
there is an electrical wall in the plane z = d/2. By placing a magnetic wall in the same plane, we find the geom-
etry of the second problem. We denote by Rr"np and R;rnp the amplitudes of the harmonics of the waves re-
flected in region A, which are found through a solution of these two problems. According to the superposition
principle, the amplitudes of the wave harmonics reflected from a dielectric inclusion of bounded length are

Rpp = (Rip — Rup)/2,
and the amplitudes of the harmonics of the transmitted waves are

Tmp = (R:Tw - R;l-p)/z
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Fig, 1. Stratified dielectric of finite length in a rectangular
waveguide. a) Structure under consideration; b) structure
equivalent to that under consideration, with the auxiliary ge-
ometry.

As in [1], we introduce an auxiliary structure, consisting of an infinitesimally thin, ideally conducting metal
strip. Joining the fields, and proceeding by analogy with Part I of [1], we find
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Equations (1) of the present article differ from Egs. (1) and (3) of [1] in the presence of a term with a
coefficient 6y, which arises due to the satisfaction of the boundary conditions at the z = d/2 boundary. For the
case of an electrical wall we have &y, = exp (—ihymdd), and the matrix Rm] should be understocid to represent

Rﬁl' In the case of an even-parity excitation, we have 6y, = —exp (—ihpgd), and Ry, 7 gives Ry,

We solve Egs. (1) by a small perturbation method, The amplitudes of the harmonics of the reflected field
are determined as the residues of the function of the complex variable h(w) at the points hma (m =1, 2, 3,...).
The equation for h(w) is
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where {Um}, {Vm}, U, V are unknown coefficients, whose behavior at large values of m is known [1]. We also
have W,, ~ m™' " exp (—mmd/24 in the limit m — = [3]. Then
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Substituting (2) into equations analogous to those for properties IV and V of the function f(w), but which reflect
the corresponding properties of h(w), we find a system of M = My + My + My, linear equations for the perturb-
ing coefficients {Up,}, {Vm}, {Wm}, U, ¥V, W. Solving this system for the cases of magnetic and electrical
walls, and satisfying the normalization of the function h(w), we find the amplitudes of the field scattered by a
dielectric inclusion of finite length.
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Fig, 2. a) Stepped dielectric wedge in wave-
guide in the four-step approximation; b) set of
four separate elementary inhomogeneities,
which are amenable to rigorous analysis,

4,

Fig. 3. Multiple scattering by
a very simple set of elementary
inhomogeneities.

In a study of the diffraction of a Hyp wave by a dielectric inclusion of finite length in a cylindrical wave~-
guide we find a system of equations identical to (1), within the changes in definition specified in Part 3 of {1].

2, Calculation of Electrodynamic Characteristics of

Inhomogeneities of Complex Shape in a Waveguide

A dielectric wedge is usually used as a "black-body" model in the microwave range. For an asymmetric
wedge (tapering toward the broad wall), the diffraction problem has been solved by a rigorous method [5]. For
the case of a symmetric wedge (with symmetric slopes toward both broad walls), which is frequently used, and
for a wedge in a cylindrical waveguide, no study has been carried out. The method of generalized scattering
matrices [6] can be used to solve the problem of the diffraction of electromagnetic waves by a symmetric di-
electric obstacle simulating a "black body" in both circular and rectangular waveguides. This method is con-
venient in that the structure under study (Fig. 2a) is represented as a sequence of elements (Fig. 2b), each of
which can be described by a generalized scattering matrix. Then the exact solution of the problem is written
as a Neumann series containing matrices of infinite order, in an analysis of the multiple diffraction by the ele-
mentary inhomogeneities which are joined together.

Let us use the generalized scattering matrix for the case of the simplified structure in Fig. 3. We in-
troduce the following notation: The amplitude of the p-th wave incident from regionIis normalizedtoone. We
denote the amplitude of the m-th reflected wave by S{i(p, m); the reflected mode has a zero phase at the front
wall of inhomogeneity . The amplitude of the m-th harmonic transmitted into reglon II is denoted by Sig(P, m},
with a zero plane at the rear wall of inhomogeneity . The quantities Su(p, m) and Siz(p, m) are the elements
of the scattering matrices Su and Sm The matrices representing the scattering by inhomogeneity 8 are Sgi, Szz,
s§2 and S5;. We introduce the auxiliary matrix S;, which describes the propagation of waves between inhomo-
geneities @ and 8. The elements of this matrix are

Solp, m) = 8, m €Xp (A, ).

We associate the wave incident from region I with the infinite-dimensional vector ¢ = { _1, where the
p-th column element is the amplitude of the p-th natural mode in the incident field. This f1elc§) is scattered by
mhomogeneltles a and B. We describe the diffracted fleld by the following vectors: the vector reflected into re-

gion I is 811(1 P while that transmitted into region II is Siza . The vector reflected from inhomogeneity 8 into
region II is susosiza The same field, transmitted into region I, is Smsos »S;S3@. Summing the multiple scat-
tering events in each of the regions, we find the following equation for the vectors of the field reflected into
region I, b, and that transmitted into region III, C:
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Fig. 4. Symmetric stepped dielectric wedges in
waveguide. a) Convex; b) concave.
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where E is the unit matrix.
Equations (3) and (4) give the exact solution of the problem.

By using this method along with the questions studied in Sec. 1, we can solve more complicated problems
involving the scattering of electromagnetic waves by inhomogeneities of a broad class (Figs. 2a, 4a, and 4b),
which represent a longitudinally inhomogeneous dielectric wedge. We allow the wedge profile along the wave-~
guide to be arbitrary.

3. Determination of the Thermal Electromvagnetic Fields

On the basis of the known amplitudes for the harmonics of the scattered field in the waveguide with the
inhomogeneity, (3) and (4), and using the waveguide form of the electromagnetic fluctuation-dissipation theo-
rem [2], we can solve the problem of finding the integral density of the fluctuation field of a waveguide struc-
ture heated to a temperature T:

EoPRo— "% 2 b 2o ol
=l exp(hw/T~l [ hy = (byg” =~ g )]

By experimentally solving the inverse problem — that of determining the degree of heating of the inhomo-
geneity and of the adjacent region — we can use these structures as thermal microwave detectors from the
plasma-heating region. As a result of these calculations we can offer practical recommendations on choosing
the geometry in parameters of the structure used. The equations found for the reflection and transmission
matrices are equally useful for working out recommendations for the development of concrete "black-body"
models inthe microwave range for the case of shielded structures. These questions are of much interest in
the design of a matching waveguide transformer with an optimum profile. The solution method used in the
present paper permits an efficient numerical application of the results.
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