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The second momen t s  a r e  found for  the spec t r a l  ampl i tudes  of the t he rma l  e l ec t romagne t i c  
f ield of a d ie lec t r ic  inhomogeneity of Complicated geomet ry  heated to a t e m p e r a t u r e  T. 

The second momen t s  of the spec t r a l  ampl i tudes  of the t he rma l  field of a d ie lec t r ic  s t ruc tu re  with an 
a r b i t r a r y  geomet ry  consis t ing of s teps  and rods  can be de te rmined  on the bas is  of the method of the genera l ized 
sca t t e r ing  m a t r i x  and [1, 2]. Specifying the t e m p e r a t u r e  dependence ej(T) of the d ie lec t r ic  constant  of step j ,  
we extend this method to the solution of analogous p rob l ems  incorpora t ing  a t e m p e r a t u r e  gradient  in the in-  
homogenei t ies .  Choosing as a bas ic  inhomogeneity a d ie lec t r i c  inclusion of finite length,  we can reduce the 
number  of calculat ion p rocedu re s  to a level  about 2 n t imes  lower  than that  for  a semiinf ini te  step (here n is the 
number  of e l ements  in the s t ruc tu re  selected).  

1. D i e l e c t r i c  I n h o m o g e n e i t y  o f  F i n i t e  L e n g t h  

in  a W a v e g u i d e  

We seek  a solution of the p rob lem of the diffract ion of an Hp0 wave by a d ie lec t r ic  inclusion of bounded 
length in a r ec tangu la r  waveguide (Fig. la) by the method of [1]. We make use of the s y m m e t r y  of the inhomo- 
geneity with r e s p e c t  to the plane z = d/2. We divide the incident field into pa r t s  of even and odd par i ty .  This 
p rob lem is reduced to two equivalent  p rob lems .  The s t ruc tu re  of the f i r s t  p rob lem is shown in Fig. lb ,  where  
there  is an e l ec t r i ca l  wall in the plane z = d/2. By placing a magnet ic  wall  in the same  plane,  we find the g e o m -  

_ -}- . , 

e t ry  of the second p rob lem.  We denote by Rmp and Rmp the amph tudes  of the h a r m o m c s  of the waves  r e -  
f lected in region A, which a re  found through a solution of these two p rob lems .  According to the superposi t ion  
pr inc ip le ,  the ampl i tudes  of the wave h a r m o n i c s  re f lec ted  f r o m  a d ie lec t r i c  inclusion of bounded length are  

R.~p = (R-~ : -  R~p)/2, 

and the ampl i tudes  of the ha rmon ic s  of the t r ansmi t t ed  waves  a re  

T~,p = (RS;  - -  Re, p)/2. 
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Fig. 1. Strat i f ied d ie lec t r i c  of finite length m a r ec tangu la r  
waveguide,  a) S t ruc ture  under  considerat ion;  b) s t ruc tu re  
equivalent  to that  under cons idera t ion ,  with the auxi l iary  g e -  
ome t ry .  

As in [1], we introduce an auxi l ia ry  s t r u c t u r e ,  consis t ing of an inf ini tes imal ly  thin,  ideally conducting meta l  
s t r ip .  Joining the f ie lds ,  and proceed ing  by analogy with P a r t  I of [1], we find 

Rmz , hn ~ + r qb hm~ - -  F qb , h ind  - -  hqb  hind + hqb hla - -  rq b hla @ rq b" 

= h~a + hm~ + rq~ I hqb 

s  ( 1 { Pq* +Tmz "~qr 
Rmz hm ~ + rq c hm a ~ Fq c hm 4 -  hq c 

- . .  
) h,o+r+ 

,_. 6.~*~c ~ = & (  i 
h~ + Fqo 

(1) 

Rmz . hm ~ _ rqr hm~ -+ Fqc hma + hqc h,~ a - -  hq~ hz~ + F~ h~ - -  rq~ ) 

Equations (l) of the p r e s e n t  a r t i c le  differ  f r o m  Eqs. (1) and (3) of [1] in the p re sence  of a t e r m  with a 
coeff icient  6m,  which a r i s e s  due to the sa t i s fac t ion  of the boundary conditions at the z = 4/2 boundary.  For  the 
case of an e l ec t r i c a l  wall  we have 6 m = exp ( - ihmdd) ,  andthe ma t r i x  l:r should be understood to r e p r e s e n t  + 
R ~ l o  In the case  of an e v e n - p a r i t y  exci ta t ion,  we have 6 m = - e x p  ( - ihmdd) ,  and Rm/  gives Rm/.  

We solve Eqs. (1) by a sma l l  pe r tu rba t ion  method. The ampl i tudes  of the ha rmon ic s  of the re f lec ted  field 
a re  de te rmined  as the r e s idues  of the function of the complex  va r i ab le  h(w) at the points hma  (m = 1, 2, 3 . . . .  }. 
The equation fo r  h(w) is 

(1 o)(1+ ~ O/Cl ~ 
I~ ' I~mb '\ h(w)- Ro I I  h,~ ~ 1 "  T X ( ) ( ~ 

'-' g 2 2 ] X 1 +  UmF,s r m r m b + W  + U  W hmd--W 
m = l  m = l  rn= ,,Vlu r m b  ~ rn= M ~ rn= l 

where  {Urn}, {Vm}, ~ ,  17 a r e  unknown coeff ic ients ,  whose behavior  at l a rge  values  of m i s  known [ll.  We also 
have W m ~ m - l - X e x p  (-Trmd/2a~ in the l imi t  m -~ oo [8]. Then 

M ~ - I  . ~ . ~  w m  - l - ~  W ~ - ~ W  w + w - -  - -  
m / ~ 

m = l  hind - -  ~ ~m~l m h m  a _ _  w m=mw~ hm~ l - -  W 

Substituting (2) into equations analogous to those for  p r o p e r t i e s  IV and V of the function f(w), but which r e f l ec t  
the cor responding  p r o p e r t i e s  of h(w), we find a s y s t e m  of M = M u + M v + M w l inear  equations for  the p e r t u r b -  
ing coeff icients  {Urn}, {Vm}, {Wm}, U, V, W~ Solving this sy s t em fo r  the cases  of magnet ic  and e lec t r i ca l  
wal l s ,  and sa t is fying the  normal iza t ion  of the function h(w), we find the ampli tudes  of the field sca t t e red  by a 
d ie lec t r i c  inclusion of finite length. 
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Fig. 2. a) Stepped d ie lec t r i c  wedge in wave -  
guide in the f o u r - s t e p  approximat ion;  b) se t  of 
four sepa ra t e  e l e m e n t a r y  inhomogenei t ies ,  
which a re  amenable  to r igorous  analysis .  
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Fig. 3. Multiple sca t t e r ing  by 
a ve ry  s imple  se t  of e l emen ta ry  
inhomogeneit ie  s. 

In a study of the diffract ion of a Hop wave by a d ie lec t r i c  inclusion of finite length in a cyl indrical  wave-  
guide we find a s y s t e m  of equations identical  to (1), within the changes in definition specif ied in P a r t  3 of [1]. 

2 .  C a l c u l a t i o n  o f  E l e c t r o d y n a m i c  C h a r a c t e r i s t i c s  o f  

I n h o m o g e n e i t i e s  o f  C o m p l e x  S h a p e  in  a W a v e g u i d e  

A d ie lec t r i c  wedge is usual ly used as a "b lack-body"  model  in the mic rowave  range.  For  an a s y m m e t r i c  
wedge ( tapering toward the broad  wall) ,  the diffract ion p rob lem has  been solved by a r igorous  method [5]. For  
the case  of a s y m m e t r i c  wedge (with s y m m e t r i c  s lopes toward both b road  wal ls) ,  which is f requent ly  used,  and 
for  a wedge in a cyl indr ical  waveguide, no study has  been ca r r i ed  out. The method of genera l ized  sca t t e r ing  
m a t r i c e s  [6] can be used to solve the p rob lem of the diffract ion of e l ec t romagne t i c  waves  by a s y m m e t r i c  di -  
e l ec t r i c  obstacle  s imulat ing a "black body" in both c i r cu la r  and rec tangu la r  waveguides.  This  method is con-  
venient  in that  the s t ruc tu re  under study {Fig. 2a) is r e p r e s e n t e d  as a sequence of e l ements  (Fig. 2b), each of 
which can be desc r ibed  by a genera l ized  sca t t e r ing  mat r ix .  Then the exact  solution of the p rob lem is wri t ten 
as a Neumann s e r i e s  containing m a t r i c e s  of infinite o r d e r ,  in an analys is  of the mult iple  diffract ion by the e l e -  
men t a ry  inhomogenei t ies  which a r e  joined together .  

Let  us use the genera l ized  sca t t e r ing  ma t r i x  for  the case of the s impl i f ied s t ruc tu re  in Fig. 3. We in- 
t roduce  the following notation: The ampli tude of the p - t h w a v e  incident f rom region I is normal ized  to one. We 
denote the ampli tude of the m - t h  re f l ec ted  wave by S~l(p, m); the r e f l ec ted  mode has  a zero  phase  at the f ront  
wall  of inhomogeneity ~. The ampli tude of the m - t h  ha rmonic  t r a n s m i t t e d  into region II is denoted by S~2(p, m) ,  
with a ze ro  plane at  the r e a r  wall  of inhomogeneity c~. The quant i t ies  S~l(p, m) and S~2(p , m) a r e  the e lements  
of the sca t t e r ing  m a t r i c e s  S~l and S~2. The m a t r i c e s  r e p r e s e n t i n g  the sca t t e r ing  by inhomogeneity ~7 a re  $2~, S ~ 22~ 
42 and ~23. We introduce the auxi l ia ry  m a t r i x  So, which d e s c r i b e s  the propagat ion  of waves  between inhomo- 
genei t ies  ~ and fT. The e lements  of this m a t r i x  a re  

S O (p, rn) = 6p,~,~ exp (ih,fll). 

h " ~ oo We assoc ia te  the wave incident f rom region I with t e irff ini te-dlmensional  vec to r  a = {ap}p= 1, where  the 
p- th  column e lemen t  is the ampli tude of the p- th  na tura l  mode in the incident field. This f i e ld  is sca t t e red  by 
in_homogeneities a and/7. We desc r ibe  the d i f f rac ted  field by the following vec to r s :  the vec tor  r e f l ec ted  into r e -  

O e ~  OZ--~ 
gion I is Sna , while that transmitted into region II is Sl2a . The vector reflected from inhomogeneity/3 into 
region II is ~21~0~12a. The same field, transmitted into region I, is S~ISoS~2SoS~2Y. Summing the multiple scat- 
tering events in each of the regions, we find the following equation for the vectors of the field reflected into 
region I~ b~ and that transmitted into region III, -~: 
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Fig. 4. Symmetric stepped dielectric wedges in 
wavegnide, a) Convex; b) concave. 

-g=  s , , .  T ' sc?,sosL (e  - SoS: SoS 2)- sos?2., 
S23 (E - -  SoS~2SoS~2) -~ SoS?~a, 

(3) 

(4) 

where E is the unit matrix. 

Equations (3) and (4) give the exact solution of the problem. 

By using this r_~ethod along with the questions studied in Sec. 1, we can solve more complicated problems 
involving the scattering of electromagnetic waves by inhomogeneities of a broad class (Figs. 2a, 4a, and 4b), 
which represent  a longitudinally inhomogeneous dielectric wedge. We allow the wedge profile along the wave- 
guide to be arbi t rary.  

3. D e t e r m i n a t i o n  of  t h e  T h e r m a l  E l e c t r o m a g n e t i c  F i e l d s  

On the basis of the known amplitudes for the harmonics of the scattered field in the waveguide with the 
inhomogeneity, (3) and (4), and using the wavegnide form of the electromagnetic fluctuation-dissipation theo- 
rem [2], we can solve the problem of finding the integral density of the fluctuation field of a waveguide s t ruc-  
ture heated to a temperature  T: 

exp(h~TT)--I 1-- = ~ , ,  mq, , �9 

By experimentally solving the inverse problem - that of determining the degree of heating of the inhomo- 
geneity and of the adjacent region - we can use these s tructures  as thermal microwave detectors from the 
plasma-heating region. As a resul t  of these calculations we can offer practical  recommendations on choosing 
the geometry in parameters  of the structure used. The equations found for the reflection and transmission 
matr ices  are equally useful for working out recommendations for the development of concrete "black-body" 
models inthe microwave range fo r  the case of shielded structures.  These questions are of much interest  in 
the design of a matching waveguide t rans former  with an optimum profile. The solution method used in the 
present  paper permits  an efficient numerical application of the results .  
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